Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions

نویسندگان

  • ADRIEN BLANCHET
  • JOSÉ A. CARRILLO
  • PHILIPPE LAURENÇOT
چکیده

This paper is devoted to the analysis of non-negative solutions for a generalisation of the classical parabolic-elliptic PatlakKeller-Segel system with d ≥ 3 and porous medium-like non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions is decided by the initial mass of the system. Actually, there is a sharp critical mass Mc such that if M ∈ (0,Mc] solutions exist globally in time, whereas there are blowing-up solutions otherwise. We also show the existence of selfsimilar solutions for M ∈ (0,Mc). While characterising the eventual infinite time blowing-up profile forM =Mc, we observe that the long time asymptotics are much more complicated than in the classical Patlak-Keller-Segel system in dimension two.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion

Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d ≥ 2 and in all of space for d ≥ 3, the uniqueness being a result ...

متن کامل

Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion

The L-critical parabolic-elliptic Patlak-Keller-Segel system is a classical model of chemotactic aggregation in micro-organisms well-known to have critical mass phenomena [10, 8]. In this paper we study this critical mass phenomenon in the context of Patlak-Keller-Segel models with spatially varying diffusivity and decay rate of the chemo-attractant. The primary tool for the proof of global exi...

متن کامل

Keller-Segel, Fast-Diffusion and Functional Inequalities

We will show how the critical mass classical Keller-Segel system and the critical displacement convex fast-diffusion equation in two dimensions are related. On one hand, the critical fast diffusion entropy functional helps to show global existence around equilibrium states of the critical mass Keller-Segel system. On the other hand, the critical fast diffusion flow allows to show functional ine...

متن کامل

Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model

We investigate the long time behavior of the critical mass Patlak-Keller-Segel equation. This equation has a one parameter family of steady-state solutions ̺λ, λ > 0, with thick tails whose second moment is not bounded. We show that these steady state solutions are stable, and find basins of attraction for them using an entropy functional Hλ coming from the critical fast diffusion equation in R ...

متن کامل

Cross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model

Abstract. A (Patlak-) Keller-Segel model in two space dimensions with an additional crossdiffusion term in the equation for the chemical signal is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical substance. This allows one to prove, for arbitrarily small cross diffusion, the global existence of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007